
MeqSilhouette Documentation
Release 2.7

Iniyan Natarajan, Roger Deane

Jul 18, 2021

Contents:

1 Introduction to MeqSilhouette 1

2 Requirements & Installation 3
2.1 Ubuntu 18.04 + Python 2.7 . 3
2.2 Building Singularity image . 4
2.3 Building Docker image . 4
2.4 Known installation issues . 5

3 Usage 7
3.1 On the local machine . 7
3.2 Via Singularity . 7
3.3 Via Docker . 8
3.4 IPython/Jupyter Notebook . 9

4 Inputs 11
4.1 JSON parset file . 11
4.2 Sky models . 12
4.3 Station and site information . 14

5 Example input JSON file 17

6 Outputs 19

7 RIME Components 21

8 Integration with pipelines 23

9 Contributors 25
9.1 Code . 25
9.2 Containerisation . 25

10 History 27
10.1 2.8 (xxxx) . 27
10.2 2.7.1 (2021) . 27
10.3 2.7 (2021) . 27
10.4 2.6.2 (2021) . 27
10.5 2.6.1 (2021) . 28
10.6 2.6 (2021) . 28

i

10.7 2.5 (2020) . 28
10.8 2.4 (2020) . 28
10.9 2.3 (2020) . 28
10.10 2.0 (2019) . 29
10.11 1.0 (2016) . 29

11 Indices and tables 31

ii

CHAPTER 1

Introduction to MeqSilhouette

MeqSilhouette is a radio interferometry observation simulator. Blecher et al. (2017) presents an earlier version which
could generate synthetic data and apply corruptions such as scattering by interstellar medium (ISM), atmospheric
effects, and antenna pointing offsets. The current version, v2, is capable of generating fully polarised, time-variable,
spectrally-resolved sky models and propagation path effects including (but not limited to) instrumental polarisation,
updated atmospheric effects and pointing offsets, time-variable antenna gains, and bandpass effects.

This documentation explains the steps necessary for installing and using MeqSilhouette.

1

https://ui.adsabs.harvard.edu/abs/2017MNRAS.464..143B/abstract

MeqSilhouette Documentation, Release 2.7

2 Chapter 1. Introduction to MeqSilhouette

CHAPTER 2

Requirements & Installation

2.1 Ubuntu 18.04 + Python 2.7

It is recommended to install the dependencies via the KERN-6 software suite:

$ sudo apt-get install software-properties-common
$ sudo add-apt-repository -s ppa:kernsuite/kern-6
$ sudo apt-add-repository multiverse
$ sudo apt-add-repository restricted
$ sudo apt-get update

Install the following dependencies via apt-get:

$ sudo apt-get install meqtrees meqtrees-timba tigger tigger-lsm python-astro-tigger \
python-astro-tigger-lsm casalite wsclean pyxis python-casacore

Note: The casacore data must be kept up-to-date. This can be done by following the instructions on the CASA
website.

Optionally, install Latex (for creating paper-quality plots):

$ sudo apt-get install texlive-latex-extra texlive-fonts-recommended dvipng

AATM v0.5 can be obtained from here. AATM cannot create the executables necessary for running MeqSilhou-
ette without the boost libraries. In Ubuntu 18.04, ensure that the packages libboost-program-options-dev, libboost-
program-options1.65-dev, and libboost-program-options1.65.1 are installed. Once these are installed, proceed as fol-
lows:

$ cd /path/to/aatm-source-code
$./configure --prefix=/path/to/aatm-installation
$ make

(continues on next page)

3

https://kernsuite.info
https://casaguides.nrao.edu/index.php/Fixing_out_of_date_TAI_UTC_tables_(missing_information_on_leap_seconds)
https://casaguides.nrao.edu/index.php/Fixing_out_of_date_TAI_UTC_tables_(missing_information_on_leap_seconds)
http://www.mrao.cam.ac.uk/~bn204/soft/aatm-0.5.tar.gz

MeqSilhouette Documentation, Release 2.7

(continued from previous page)

$ make install
$ export PATH=$PATH:/path/to/install/aatm-installation/bin

If using a virtual environment, the following steps are necessary (skip ahead if not using virtualenv):

$ virtualenv /path/to/env
$ source /path/to/env/bin/activate
$ pip install -U pip setuptools wheel # recommended

Note: If –system-site-packages is not passed to virtualenv, the global packages installed via apt-get above will not be
available and must be installed manually from source.

Now, check out MeqSilhouette version 2.7 from GitHub and install using pip:

$ git clone --branch v2.7 https://github.com/rdeane/MeqSilhouette.git
$ cd MeqSilhouette
$ pip install .

The turbo-sim.py script from MeqTrees is included in the framework directory. If you do not have it, add a symbolic
link to the copy in your meqtrees-cattery installation:

$ ln -s /path/to/meqtrees-cattery/Cattery/Siamese/turbo-sim.py /path/to/MeqSilhouette/
→˓framework/turbo-sim.py

2.2 Building Singularity image

The recommended way to run MeqSilhouette is via Singularity. The Singularity definition file singularity.def is
shipped with the repository. If you do not have Singularity installed on your system, follow the installation instructions
on the Singularity website. Once Singularity is installed, the singularity image file (SIF) can be created as follows:

$ sudo singularity build meqsilhouette.sif singularity.def

Note that the build process automatically ensures that casacore data are up-to-date. If these data are missing, and
if you do not have a working casa installation from which to obtain this information, simply rebuild the image to
eliminate this warning thrown by CASA.

2.3 Building Docker image

Docker is also supported. Docker can be installed on your system via apt-get. Once installed, build the docker image
as follows:

$ cd /path/to/Dockerfile
$ docker build -t meqsilhouette .

As before, the build process ensures that casacore data are up-to-date.

4 Chapter 2. Requirements & Installation

https://github.com/rdeane/MeqSilhouette/tree/v2.7
https://sylabs.io/guides/3.5/admin-guide/installation.html

MeqSilhouette Documentation, Release 2.7

2.4 Known installation issues

1. If MeqTrees cannot see the TiggerSkyModel module that ought to load when turbo-sim.py is run (i.e. when an
ASCII sky model is used), the parent directory of Tigger must be added to PYTHONPATH. Bear in mind that
this may cause python version conflicts with other packages. In that case, it is recommended to have Tigger
installed in a separate directory such as /opt/Tigger. For manual installation of Tigger and tigger-lsm, refer to
their respective repositories. Without this, MeqSilhouette will still work with FITS images as input sky models.

2. If MeqSilhouette cannot find aatm, modify LD_LIBRARY_PATH as follows:

export LD_LIBRARY_PATH=/path/to/aatm-0.5/lib:$LD_LIBRARY_PATH

3. If the error Incorrect qhull library called is thrown, ensure scipy==0.17 is installed.

4. MeqSilhouette will soon be ported to astropy.fits and pyfits will no longer be a dependency. As of now though,
pyfits is still required. If pyfits throws an ImportError for the modules gdbm/winreg, a quick and dirty fix is to
open the following file:

/path-to-virtualenv/lib/python2.7/site-packages/pyfits/extern/six.py

and comment out the lines:

MovedModule("dbm_gnu", "gdbm", "dbm.gnu")
MovedModule("winreg", "_winreg")

2.4. Known installation issues 5

https://github.com/ska-sa/tigger
https://github.com/ska-sa/tigger-lsm

MeqSilhouette Documentation, Release 2.7

6 Chapter 2. Requirements & Installation

CHAPTER 3

Usage

MeqSilhouette can be run in a number of ways. They all require that a JSON parset file is passed as the sole argument.

3.1 On the local machine

If MeqSilhouette is installed on the local machine, it should already have the command meqsilhouette in PATH and
can be run as follows:

$ meqsilhouette obs_settings.json

This command will run the driver script run_meqsilhouette.

To use an existing MS, MeqSilhouette uses another driver script called readms_runmeqs which can be run as follows:

$ python </path/to/readms_runmeqs.py> </path/to/input/json/parset/file> </path/to/
→˓existing/ms>

The existing MS will be copied to output/inputs directory and will be regularized if necessary i.e., missing baselines
for all timestamps in the MS will be inserted, so that the MS used for corruptions contains a regular grid of visibility
values.

Note: If using an existing MS, care must be taken to ensure that all timestamps from the beginning to the end are
present in the MS. If there are missing timestamps, then tropospheric turbulence cannot be added, since this will cause
the covariance matrix to be NOT positive definite and hence its Cholesky decomposition will fail.

3.2 Via Singularity

There are two ways to run MeqSilhouette via Singularity. In both cases, it is the responsibility of the user to ensure
that the relevant paths in the JSON parset file are writable.

7

MeqSilhouette Documentation, Release 2.7

3.2.1 Interactive mode

Interactively using the shell option:

$ singularity shell meqsilhouette.sif # drops the user inside the container
> meqsilhouette obs_settings.json

3.2.2 Command-line mode

Invoke the run option:

$ singularity run meqsilhouette.sif obs_settings.json

3.3 Via Docker

There are two ways to run MeqSilhouette via Docker as well. The interactive route is a bit more involved while the
command-line mode is more straightforward.

As before, it is the responsibility of the user to ensure that the relevant paths in the JSON parset file are writable.

3.3.1 Interactive mode

A docker volume is the best way to share data between the container and the host. First copy the relevant input files to
a directory with write access. Assuming that this directory is ~/data, start the docker container as follows:

$ docker run -dit -P -v ~/data:/meqsdata meqsilhouette

where /meqsdata is an arbitrary mount point in the running container to which the host directory ~/data is to be bound.
The above command will print the container ID which is a long string of characters (this can also be obtained by typing
docker ps -a on the terminal). Once started, attach to the container using the first four characters xxxx of this ID:

$ docker attach xxxx

This will drop the user into the shell from which MeqSilhouette can be run as follows:

$ meqsilhouette /meqsdata/obs_settings.json

Since /meqsdata is where ~/data is mounted, any output files must be written to /meqsdata for them to persist after the
container is stopped. If the output files are written elsewhere, the execution will still be successful, but the files will
not persist in host storage. To avoid this, the data generated must be manually copied into /meqsdata.

3.3.2 Command-line mode

More easily, the following command on the terminal (with all the caveats about paths to input/output files mentioned
above) executes MeqSilhouette:

$ docker run -v ~/data:/meqsdata meqsilhouette meqsilhouette /meqsdata/obs_settings.
→˓json

Note that the first meqsilhouette is the name of the image to be run and the second meqsilhouette is the command that
must be run within the container, since no default entrypoint/command is defined.

8 Chapter 3. Usage

MeqSilhouette Documentation, Release 2.7

3.4 IPython/Jupyter Notebook

Running MeqSilhouette from any Python interpreter is as easy as firing up the interpreter and typing the following:

> from meqsilhouette.driver import run_meqsilhouette
> run_meqsilhouette.run_meqsilhouette('/path/to/JSON/parset/file')

The above command will run the default driver script shipped with the source code. This is the same script run by the
command meqsilhouette on the command-line in the above cases.

To run readms_runmeqs:

> from meqsilhouette.driver import readms_runmeqs
> readms_runmeqs.readms_runmeqs(</path/to/input/json/parset/file>, </path/to/existing/
→˓ms>)

3.4.1 For advanced users

MeqSilhouette provides two driver scripts by default. Advanced users can construct their own versions of the driver
script by importing the framework module in their code directly. For instance, additional operations on the Measure-
ment Set such as flagging or averaging can be performed by an enhanced driver script tailored to the needs of the
user.

3.4. IPython/Jupyter Notebook 9

MeqSilhouette Documentation, Release 2.7

10 Chapter 3. Usage

CHAPTER 4

Inputs

MeqSilhouette accepts as inputs various telescope, sky, and observation parameters in different formats. The master
input file is a JSON parset containing many input parameters. Sample input files and settings can be found in the data
subdirectory. Each input file type is explained in detail below.

4.1 JSON parset file

The input parset file is in JSON format with parameters that are loosely grouped into the following sets:

• General I/O parameters

• Measurement Set (MS) parameters (prefixed ms_)

• Imaging parameters (prefixed im_)

• Tropospheric parameters (prefixed trop_)

• Antenna pointing error parameters (prefixed pointing_)

• Bandpass corruption parameters (prefixed bandpass_)

Table 1: Parameters in JSON parset file
Parameter Type Units Explanation
outdirname string Output directory with absolute or relative path. Must be writable.
input_fitsimage string Directory containing sky models in FITS image format or ASCII/Tigger-LSM file containing the source list with absolute or relative path. See Sky models.
input_fitspol bool Indicate that the FITS sky models are polarised. Used only when input_fitsimage is a directory containing FITS sky models.
input_changroups int The number of groups into which the total number of frequency channels must be divided. Used only when input_fitsimage is a directory containing FITS sky models. Must be equal to the number of frequencies for which the FITS files are present.
output_to_logfile bool Write output messages to logfile instead of to the terminal.
add_thermal_noise bool Add baseline-dependent thermal noise, calculated using station SEFDs obtained from station_info file.
exportuvfits bool Export MS to UVFITS format.
station_info string Name of the file containing individual station information such as SEFD, coherence time, primary beam model etc., with absolute or relative path. See Station and site information.
bandpass_enabled bool Add complex bandpass corruptions.
bandpass_table string Name of the ASCII file containing bandpass gain amplitudes for each station for a set of frequencies with absolute or relative path. Each line consists of the station name and a string containing the bandpass amplitude for both polarisations in the format (bpass_ampl_pol1, bpass_ampl_pol2) for each representative frequency. Each column represents a frequency value in GHz. The phases are generated randomly between -30 and +30 degrees.

Continued on next page

11

MeqSilhouette Documentation, Release 2.7

Table 1 – continued from previous page
Parameter Type Units Explanation
bandpass_freq_interp_order int Order of spline interpolation. Integer between 1 and 5.
bandpass_makeplots bool Generate bandpass plots.
elevation_limit double radians Flag visibilities below this elevation limit.
corr_quantbits int Number of bits used for quantisation by the correlator (e.g. 2 for four levels). Used to compute correlator efficiency.
predict_oversampling int Oversampling factor to improve the accuracy of forward modelling with WSClean. Must be an odd number (e.g. 8191).
predict_seed int Seed for random number generation with numpy. Set to -1 will disable seeding.
ms_antenna_table string Name of CASA ANTENNA table to use for creating the MS, with absolute or relative path.
ms_datacolumn string Name of the MS column to write the output visibilities to. Commonly used values are ‘DATA’, ‘CORRECTED_DATA’, or ‘MODEL_DATA’.
ms_RA double degrees Right Ascension of the pointing centre of the observation.
ms_DEC double degrees Declination of the pointing centre of the observation.
ms_polproducts string Specify the polarisation feed type in CASA recognisable format (e.g. ‘RR RL LR LL’ or ‘XX XY YX YY’).
ms_nu double GHz Centre frequency of the bandpass.
ms_dnu double GHz Bandwidth of the spectral window.
ms_nchan int Number of channels.
ms_obslength double hours Duration of the observation.
ms_tint double seconds Integration time.
ms_StartTime string Starting time of the observation (e.g. ‘UTC,2017/04/01/00:00:00.00’).
ms_nscan int Number of scans in the observation.
ms_scan_lag double hours DEPRECATED. Left intact for backward compatibility.
ms_makeplots bool Generate plots of the data such as uv-coverage and uv-distance sensitivity bins.
ms_correctCASAoffset bool In a two-step process, correct for the spurious offset introduced by CASA to the start-time of the observation. Simulate an MS of the same duration as the required observation (but with a much longer integration time) to calculate this offset and adjust the start-time by this value to create an MS that starts at the required time.
make_image bool Make dirty image using lwimager. The im_ parameters are used only when this parameter is True.
im_cellsize multi Cell size to be used for imaging with units (e.g. ‘3e-6arcsec’).
im_npix int pixels Image size.
im_stokes string Stokes parameter to image. Allowed values are ‘I’, ‘Q’, ‘U’, or ‘V’.
im_weight string Weighting scheme to use for imaging. Allowed values are ‘uniform’, ‘natural’, or ‘briggs’.
trop_enabled bool Enable corruptions by the troposphere. The other trop_ parameters are used only when this parameter is True.
trop_wetonly bool Simulate only the wet component (i.e. the component due to water vapour).
trop_attenuate bool Enable attenuation by the troposphere.
trop_noise bool Include sky noise from the troposphere.
trop_turbulence bool Add Kolmogorov turbulence to the simulated visibility phases.
trop_mean_delay bool Add mean (i.e. non-turbulent) delays due to the mean tropospheric component (both dry and wet).
trop_percentage_calibration_error float DEPRECATED. Left intact for backward compatibility.
trop_fixdelays bool Insert time-invariant delays computed by taking the mean over the spectral window.
trop_fixdelay_max_picosec int picoseconds DEPRECATED. Maximum absolute value of the constant delays generated when trop_fixdelays=True in picoseconds. Used mainly for testing specific calibration experiments such as fringe-fitting. Regardless of the value of this parameter, the delays are computed by averaging over a spectral window.
trop_makeplots bool Generate troposphere-related plots such as zenith opacity, elevation-dependent transmission, zenith sky temperature, and turbulent phase errors and delays.
pointing_enabled bool Enable pointing errors. The other pointing_ parameters are used only when this parameters is True.
pointing_time_per_mispoint float minutes Generate new pointing error per station every this minute.
pointing_makeplots bool Generate pointing offset-related plots.
uvjones_g_on bool Add time-varying station-based complex gains (G-Jones). The per-station values to be used to generate the gains are read from the station_info file.
uvjones_d_on bool Add instrumental polarisation. Polarisation leakage (D-Jones) and parallactic angle rotation (P-Jones) are added. The per-station values to be used to generate the leakage values are read from the station_info file.
parang_corrected bool Indicate if the correction for parallactic angle rotation has already been made. If True, rotate the visibilities by twice the field angle. If False, perform parallactic angle rotation correction before introducing polarisation leakage (D-Jones) (Leppanen et al. 1995).

4.2 Sky models

The parameter input_fitsimage points to sky models in one of three formats that are recognisable by MeqSilhouette.

12 Chapter 4. Inputs

https://ui.adsabs.harvard.edu/abs/1995AJ....110.2479L/abstract

MeqSilhouette Documentation, Release 2.7

4.2.1 FITS format

Sky models in FITS format are forward-modelled using WSClean under the hood. The directory pointed to by in-
put_fitsimage must contain all FITS files that constitute the sky model, named according to the following convention:

• If there is no time-variability or polarisation, then input_fitsimage contains only one FITS image named t0000-
model.fits.

• If the sky model is time-variable, the FITS files named txxxx-model.fits, where xxxx=0000, 0001, The total
number of unique times in the MS are divided evenly into N groups, where N is the number of times for which
FITS files are present.

• If the sky model is polarised, the FITS images are named txxxx-[IQUV]-model.fits, representing each Stokes
component [I, Q, U, V]. All Stokes components must be present for each time and frequency.

• If the sky model is frequency-variable, the FITS files are named t0000-yyyy-model.fits, where yyyy=0000, 0001,
. . . . The number of frequencies must be equal to input_changroups.

Following WSClean, MeqSilhouette does not care about the actual frequencies in the FITS headers. This means that
the input channels in the MS will be divided evenly into input_changroups groups and each FITS image along the
frequency axis will be used to predict visibilities into the appropriate group, regardless of the frequencies in the FITS
headers.

Putting all of the above together, a time and frequency varible polarised sky model will consist of a series of FITS files
named txxxx-yyyy-[I,Q,U,V]-model.fits, where xxxx=0000, 0001, (as many as needed to replicate intrinsic source
variability) and yyyy=0000, 0001, (must be equal to input_changroups).

Note: WSClean can predict visibilities only into the MODEL_DATA column. MeqSilhouette will copy them into
ms_datacolumn, after which the signal corruptions are applied only to ms_datacolumn. Hence, the uncorrupted visi-
bilities are available in MODEL_DATA column for inspection. If MeqTrees is used instead, the uncorrupted visibilities
from ms_datacolumn are copied to MODEL_DATA.

4.2.2 ASCII / Tigger LSM format

The ASCII / Tigger LSM file with extensions .txt / .lsm.html respectively, are sky model files recognisable by the
tigger-lsm module used by MeqTrees. This file contains a list of sources, with each row corresponding to one source.
The columns are as shown in the figure below:

4.2. Sky models 13

MeqSilhouette Documentation, Release 2.7

Note: It is recommended to use FITS images as inputs (in which case WSClean is used for predicting visibilities)
for EHT simulations. MeqTrees has been observed to occasionally give rise to precision errors of up to ~1 micro-
arcsecond. Hence, when using ASCII / Tigger LSM files, additional sanity checks must be performed to ensure that
the source positions are not offset from the expected values. This is an outstanding issue with MeqTrees and will be
resolved in a future version.

4.3 Station and site information

The parameter station_info points to an ASCII file containing additional information about the participating stations
and the site weather parameters for generating the Jones matrices for corrupting the visibilities. Each row corresponds
to one station. The details of each column are given below.

14 Chapter 4. Inputs

MeqSilhouette Documentation, Release 2.7

Table 2: Station and site information
Column Type Units Explanation
station string Station name or code.
sefd float Jan-

sky
System Equivalent Flux Density.

pwv float mil-
lime-
tres

Precipitable water vapour.

gpress float mil-
libar

Ground pressure at site.

gtemp float Kelvin Ground temperature at site.
c_time float sec-

onds
Tropospheric coherence time.

ptg_rms float arc-
sec-
onds

RMS error in pointing.

PB_FWHM230 float arc-
sec-
onds

Full Width at Half-Maximum of the primary beam.

PB_model string Geometric model to be used for the primary beam (‘gaussian’ and ‘cos3’ are avail-
able; hardwired to gaussian for now).

ap_eff float Aperture efficiency.
g[RL]_mean,
g[RL]_std

float Mean and standard deviation of the normal distribution from which to draw time-
varying real/imag parts of the G-Jones terms for R and L feeds.

d[RL]_mean,
d[RL]_std

float Mean and standard deviation of the normal distribution from which to draw
frequency-varying real/imag parts of the D-Jones terms for R and L feeds.

feed_angle float de-
grees

Initial feed angle offset.

mount string Mount type of each station. Valid values are ‘ALT-AZ’, ‘ALT-AZ+NASMYTH-R’,
‘ALT-AZ+NASMYTH-L’.

4.3. Station and site information 15

MeqSilhouette Documentation, Release 2.7

16 Chapter 4. Inputs

CHAPTER 5

Example input JSON file

Examples for all input types can be found in the source code. The following is an example JSON file that simulates a
polarised sky model and corrupts the complex visibilities with SEFD-based thermal noise.

{
"outdirname":"EHTsim",
"input_fitsimage":"old_grmhd_pol",
"input_fitspol":1,
"input_changroups":1,
"output_to_logfile":0,
"add_thermal_noise":1,
"make_image":0,
"exportuvfits":0,
"station_info":"eht_betterweather.antennas",
"bandpass_enabled":0,
"bandpass_table":"eht_bandpass.txt",
"bandpass_freq_interp_order":1,
"bandpass_makeplots": 0,
"elevation_limit":0.174,
"corr_quantbits":2,
"predict_oversampling":8191,
"predict_seed":42,
"ms_antenna_table":"ANTENNA_EHT2017",
"ms_datacolumn":"DATA",
"ms_RA":187.70591666666667,
"ms_DEC":12.391122222222222,
"ms _polproducts":"RR RL LR LL",
"ms_nu":228,
"ms_dnu":2,
"ms_nchan":64,
"ms_obslength":4,
"ms_tint":10,
"ms_StartTime":"UTC,2017/04/11/00:32:00.00",
"ms_nscan":1,
"ms_scan_lag":0,

(continues on next page)

17

MeqSilhouette Documentation, Release 2.7

(continued from previous page)

"ms_makeplots": 1,
"ms_correctCASAoffset":1,
"im_cellsize":"3e-6arcsec",
"im_npix":64,
"im_stokes":"I",
"im_weight":"uniform",
"trop_enabled":0,
"trop_wetonly":0,
"trop_attenuate":1,
"trop_noise":1,
"trop_turbulence":1,
"trop_mean_delay":1,
"trop_percentage_calibration_error":100,
"trop_fixdelays":0,
"trop_fixdelay_max_picosec": 0,
"trop_makeplots": 0,
"pointing_enabled":0,
"pointing_time_per_mispoint": 10,
"pointing_makeplots": 0,
"uvjones_g_on": 0,
"uvjones_d_on": 0,
"parang_corrected": 1

}

18 Chapter 5. Example input JSON file

CHAPTER 6

Outputs

The primary output product of MeqSilhouette is a CASA Measurement Set containing the complex visibilities, with
all the user-requested corruptions applied to the data. The Measurement Set v2 specification can be found here. The
tables and subtables in the MS are filled as follows:

• The value of ms_datacolumn in the input JSON file must correspond to an existing column in the MAIN table.
This column is filled with the corrupted complex visibilities.

• The MODEL_DATA column is filled with uncorrupted visibilities. It is recommended not to set
ms_datacolumn=’MODEL_DATA’ so that the uncorrupted visibilities are available to the user for later inspec-
tion.

• The SIGMA column is filled with the standard deviation of the baseline-based complex visibilities computed
using the SEFD. If mulltiple frequency channels are present, then SIGMA_SPECTRUM is also filled with these
values.

• The WEIGHT column is filled with inverse-variance weighting with the variance computed using the SIGMA
values. If mulltiple frequency channels are present, then WEIGHT_SPECTRUM is also filled with these values.

• The ANTENNA subtable is the same as the input antenna table pointed to by ms_antenna_table.

Optionally, there a few other outputs that MeqSilhouette can generate for recording the synthetic data generation
process and verifying the contents of the MS.

• The numerical values of all the Jones matrices are saved as numpy arrays.

• A number of plots illustrating the properties of the complex visibilities and the various effects applied to them.

• A preliminary image of the simulated data.

• Export the MS into UVFITS format, for compatibility with other calibration packages such as eht-imaging and
AIPS.

19

https://casa.nrao.edu/Memos/229.html

MeqSilhouette Documentation, Release 2.7

20 Chapter 6. Outputs

CHAPTER 7

RIME Components

The various components of the Radio Interferometer Measurement Equation (RIME) (Smirnov 2011, and references
therein) are implemented in MeqSilhouette. The generic RIME is given by

𝑉𝑝𝑞 = 𝐺𝑝

(︃∑︁
𝑠

𝐸𝑝𝑠𝐾𝑝𝑠𝐵𝑠𝐾
𝐻
𝑞𝑠𝐸

𝐻
𝑞𝑠

)︃
𝐺𝐻

𝑞

where for source 𝑠 and antenna 𝑝, 𝐺𝑝 and 𝐸𝑝𝑠 represent the direction-independent effects (DIEs) and direction-
dependent effects (DDEs) respectively, 𝐾𝑝𝑠 represents the scalar phase delay matrix, and 𝐵𝑠 represents the brightness
matrix.

For more details, refer to Natarajan et al., (in prep).

21

https://arxiv.org/abs/1101.1764

MeqSilhouette Documentation, Release 2.7

22 Chapter 7. RIME Components

CHAPTER 8

Integration with pipelines

MeqSilhouette can be used in tandem with other radio astronomy simulation/calibration software packages in software
pipelines for data synthesis/reduction/analysis.

The SYnthetic Measurement creator for long Baseline Arrays (SYMBA) pipeline (Roelofs et al., 2019) uses MeqSil-
houette for synthetic data generation for the Event Horizon Telescope (EHT).

23

https://bitbucket.org/M_Janssen/symba/
https://ui.adsabs.harvard.edu/abs/2020A%26A...636A...5R/abstract

MeqSilhouette Documentation, Release 2.7

24 Chapter 8. Integration with pipelines

CHAPTER 9

Contributors

9.1 Code

• Iniyan Natarajan

• Roger Deane

• Freek Roelofs

• Michael Janssen

• Tariq Blecher (MeqSilhouette v1)

9.2 Containerisation

• Iniyan Natarajan

• Robin Hall

25

MeqSilhouette Documentation, Release 2.7

26 Chapter 9. Contributors

CHAPTER 10

History

10.1 2.8 (xxxx)

• Add ability to read in an existing MS and regularize it

• Update tropospheric plotting modules

• Apply tropospheric corruptions to single channel datasets

10.2 2.7.1 (2021)

• Update how plotting modules handle non-existent arrays

• New tropospheric turbulence module

10.3 2.7 (2021)

• Package MeqSilhouette

• Update singularity recipe and Dockerfile

• Update casa data while building images

• Update documentation

10.4 2.6.2 (2021)

• Extensive updates to documentation

• Singularity containerisation

27

MeqSilhouette Documentation, Release 2.7

• Add option to run with Jupyter notebook

• Add license

• Update ms plotting module

• Ensure uncorrupted vis are copied to MODEL_DATA always

10.5 2.6.1 (2021)

• Improve output path handling

• Synchronize sample input files and default input settings

• Update documentation

10.6 2.6 (2021)

• Implement frequency-dependent polarization leakage and remove time dependence

• Improve error handling for memory errors

• Chunk data to fit in memory

• Add paper-friendly plots

10.7 2.5 (2020)

• Generate real and imaginary parts of orthogonal polarization feeds independently for time-varying antenna gains
and polarization leakage

• Generate interpolated bandpass gains independently for orthogonal polarization feeds

• Clean up input files

10.8 2.4 (2020)

• Handle frequency-dependent source models

• Verify existence of bandpass gains table

• Add new bandpass plotting capability

• Implement time-varying complex antenna gains

• Remove deprecated functions

10.9 2.3 (2020)

• Streamline random seed initialization

• Handle potential rounding errors in antenna pointing offsets

• Add sky noise to visibility weight estimation

28 Chapter 10. History

MeqSilhouette Documentation, Release 2.7

• Include CASA time offset correction

10.10 2.0 (2019)

• Depend mainly on WSClean for forward modelling (MeqTrees only for txt sky models)

• Full polarimetric simulations

• Simulate time-variable sources

• Add complex bandpass gains

• Add instrumental polarization and parallactic angle rotation (write visibilities in both antenna and sky frames)

• Improve pointing error module

• Improve tropospheric corruption and thermal noise modules

• Add plotting modules

• Remove scattering screen

• Refactor code for seamless integration within pipelines such as SYMBA

10.11 1.0 (2016)

• Tropospheric corruptions

• Basic pointing error module

• ISM scattering

10.10. 2.0 (2019) 29

MeqSilhouette Documentation, Release 2.7

30 Chapter 10. History

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

31

	Introduction to MeqSilhouette
	Requirements & Installation
	Ubuntu 18.04 + Python 2.7
	Building Singularity image
	Building Docker image
	Known installation issues

	Usage
	On the local machine
	Via Singularity
	Via Docker
	IPython/Jupyter Notebook

	Inputs
	JSON parset file
	Sky models
	Station and site information

	Example input JSON file
	Outputs
	RIME Components
	Integration with pipelines
	Contributors
	Code
	Containerisation

	History
	2.8 (xxxx)
	2.7.1 (2021)
	2.7 (2021)
	2.6.2 (2021)
	2.6.1 (2021)
	2.6 (2021)
	2.5 (2020)
	2.4 (2020)
	2.3 (2020)
	2.0 (2019)
	1.0 (2016)

	Indices and tables

